

Making Sense of Application Architecture Choices
Summer 2014
Art Kay, Developer Relations Manager Sencha, Inc

1 1700 Seaport Blvd. Suite 120, Redwood City, CA 94063 1 (800) 212–2802 www.sencha.com @sencha

Abstract
Just like functions and objects help developer efficiency by allowing code reuse and modularity at a micro level,
application architectures help team efficiency at the macro level by organizing, abstracting and restricting how
large pieces of code interact.

This paper summarizes the currently popular JavaScript application architectures and takes a deep dive into
the latest application architecture that Sencha supports – Model-View-ViewModel (MVVM).

Introduction
The Sencha Ext JS framework has become an industry standard for developing enterprise web applications
thanks to its comprehensive widget library, powerful data package and robust tooling. Ext JS has proven to be
a highly scalable and easily customizable framework, with over 60% of Fortune 100 companies and more than
2 million developers worldwide using it.

Since the original Ext JS 1.0 release in 2007, a lot has changed in our industry – and web applications are
certainly larger and more complex than ever. In 2010, Sencha released Touch 1.0, delivering the industry’s
first JavaScript framework to support a Model-View-Controller pattern (MVC), addressing the architectural
problems often faced by large enterprise web applications. We then applied that feature to Ext JS 4.0 in 2011,
helping to organize application code in the new world of enterprise web apps.

Sencha has recently released Ext JS 5.0 with optional support for the MVVM architectural pattern. Ext JS 5
includes features such as two-way data binding and declarative configuration. We know that enterprise web
applications can be extremely diverse, and that it’s absolutely critical to choose the correct architecture at the
beginning of a project to ensure its success. By supporting both MVC and MVVM, Ext JS 5 is the most flexible
option among popular JavaScript frameworks for building enterprise web applications.

The Evolution of Enterprise Applications
For most of its early history, the Internet was nothing more than a linked web of simple HTML pages. The term
“web application” didn’t yet exist, as web technologies (browsers, tooling, even the raw language specifications)
couldn’t conceivably envision “applications” as we know them today.

Beginning in 1995, JavaScript was useful for little more than form field validation and image rollovers. The
popular server-side languages at that time (CGI, PHP, ASP, Cold Fusion, etc.) delivered static HTML pages.
Each time the user clicked on a link or filled out a form, the server spit out a brand new page. Even the very
coolest websites, created by graphic designers using tools like Photoshop, lacked any real functionality or
interactivity.

2 1700 Seaport Blvd. Suite 120, Redwood City, CA 94063 1 (800) 212–2802 www.sencha.com @sencha

<html>

 <head></head>

 <body>

 <form onsubmit=”return validate(this);”>

 <input type=”text” name=”name” id=”name”>

 </form>

 <script>

 function validate(form) {

 // DO STUFF

 }

 </script>

 </body>

</html>

The little bit of JavaScript that was being written simply attached rudimentary functions to DOM nodes. HTML
markup and JavaScript code existed in the same file – and this mess of unstructured code often resulted in
memory leaks.

3 1700 Seaport Blvd. Suite 120, Redwood City, CA 94063 1 (800) 212–2802 www.sencha.com @sencha

Browser Wars: 1995 - 2008
This traditional webpage architecture began to change as new browsers appeared, better technologies
emerged and faster internet connections became prevalent.

•

1995 2003 2004 2008

Hotmail jQuery
Gmail
iPhone

IE 1.0
Netscape Navigator

Safari Firefox Chrome

In 1995, Internet Explorer 1.0 shipped and its only real competitor was Netscape Navigator 1.0.
• Several versions of Opera shipped in the late 1990s, though its market share and impact was minimal.
• In 2003, Apple first released Safari.
• In 2004, Mozilla first released Firefox.
• In 2006, the world saw jQuery for the first time.
• In 2007, Apple released the first iPhone which shipped with the first true “mobile” browser.
• In 2008, Google first released Chrome.

With more browsers, it became harder to deliver consistent websites because of variations in the JavaScript
and rendering engines. To help combat the cross-browser differences, a few new JavaScript libraries appeared.
jQuery, Prototype, and YUI all became very popular as developers faced a critical need to write code that would
work on all platforms.

The Rise of JavaScript and AJAX
In spite of the variations in behavior seen across the new multitude of browsers, the most significant benefit of
the browser wars was that every browser received new features and improvements in capabilities. Although
not every browser implemented things like CSS specs the same way, the fact remained that all browsers could
do mostly the same things.

But not long after Google Maps shipped in February 2005 – the first mass-market AJAX application – the
Internet began to completely change. The World Wide Web, which was previously dominated by static web
pages, saw a complete paradigm shift in how “web applications” were engineered.

AJAX no longer required the server to completely re-render the page; the client-side applications instead
requested data directly from server APIs and REST endpoints and managed the DOM themselves.

4 1700 Seaport Blvd. Suite 120, Redwood City, CA 94063 1 (800) 212–2802 www.sencha.com @sencha

Web Browser

Traditional Web Model

Web Browser

AJAX Web Model

Web Server Web Server

HTTP Request

HTTP Request

JavaScript Call

HTML+Resrouces

XML

HTML+Resrouces

Web Page Web Page

JavaScript

By 2006 or so, companies realized the potential behind the web. Company websites were no longer just static
listings of their products; websites became products themselves, and customers expected to log in to their
business applications from anywhere.

When the purpose of the Internet began to change, so did the teams who built those websites. Graphic
designers were now augmented by more seasoned developers who could take the designs and add the
interactions and business logic to create an application.

5 1700 Seaport Blvd. Suite 120, Redwood City, CA 94063 1 (800) 212–2802 www.sencha.com @sencha

<html>

 <head></head>

 <body>

 <h1>I Haz Internet</h1>

 <p id=foo>Circa 1995</p>

 </body>

</html>

$(document).ready(function() {

 $(foo).on(‘click’, function(e) {

 // Do Something //

 }})

 .addCls(bar)

 .html(<p>random text</p>)

 .slideUp(2000)

 .css(color, red)

 // etc…

});

Oddly enough, the underlying code for these new web applications didn’t change much from what we had
seen on static websites just a few years prior.

HTML pages did manage to shed some weight relating to frames and forms. Due to the rise of AJAX, the size
of the HTML files actually began to shrink because client-side applications could request data directly from
server APIs and REST endpoints.

JavaScript now managed more and more of the DOM. Libraries like jQuery certainly helped to iron out a
lot of manual work required to deliver apps across browsers… but the code remained largely unorganized.
JavaScript was still being attached to DOM nodes and often resulted in memory leaks. All of the logic was
shoved into a single file leading to a gigantic mess of spaghetti code, and the convoluted method chains
resulted in code that was difficult to maintain.

For smaller applications and simpler websites, the lack of any reasonable architecture was a headache, but
definitely not a deal breaker. However, for enterprise applications, this presented a huge problem.

Enterprise companies were slow to adopt the new browsers and emerging web technologies. But as these
companies migrated their applications to the web, they also noticed that libraries like jQuery didn’t quite solve
the problems they faced when building larger applications.

While jQuery’s AJAX and CSS utilities were certainly useful, the complete lack of JavaScript architecture caused
many problems for development and long-term maintenance. Memory leaks crippled applications, adding

6 1700 Seaport Blvd. Suite 120, Redwood City, CA 94063 1 (800) 212–2802 www.sencha.com @sencha

features took months rather than weeks, and training new developers on legacy code became impossible. In
short, enterprise web applications could not scale using the existing JavaScript libraries.

Furthermore, enterprise companies needed a standardized approach to building their applications. Having
consistent APIs and server-side architectures helped reduce development and maintenance costs – but
without anything like that on the client, enterprise companies struggled to find a solution they could rely on.

The enterprise desperately needed a solution which would bring order to web applications. Sure the companies
with really large enterprise apps needed to organize their code to avoid a mess of spaghetti…but they also
needed a consistent paradigm for building applications, one that could be taught to a diverse development
team and scale as new features were added.

Ext JS 1.0 was released in April 2007, and it was among the first true JavaScript frameworks that attempted
to solve these problems faced by the enterprise.

Ext JS first started as an extension of the YUI library (termed “yui-ext”) in early 2006, but it quickly grew into an
independent library. Like other JavaScript libraries at the time, Ext JS 1.0 was a widget library created to help
developers build Rich Internet Applications that functioned consistently across browsers. Later that year, Ext
JS 2.0 was released as a self-contained framework featuring more widgets, superior documentation, better
examples, and even contained its own base cross-browser abstraction layer.

In 2007, Ext JS was very different from all other JavaScript libraries. Rather than attaching random JavaScript
to DOM nodes, Ext JS introduced the approach of object oriented programming and inheritance to web
applications by making JavaScript the focus of development rather than HTML. This helped conceptualize
application programming, stopping the paradigm of endless closures and spaghetti code, and eliminating
common memory leaks.

7 1700 Seaport Blvd. Suite 120, Redwood City, CA 94063 1 (800) 212–2802 www.sencha.com @sencha

<html>

 <head></head>

 <body>

 </body>

</html>

var onClickHandler = function(e) {

 // Do Stuff //

};

var widget = new Ext.Container({

 height: 100,

 width: 300,

 renderTo: Ext.getBody(),

 listeners: {

 click: onClickHandler

 }

});

The most revolutionary part of Ext JS was the component lifecycle. Each widget in the framework had its
own lifecycle – so developers could easily modify component state through custom events. Event logic was
cleaned up properly upon component destruction, so memory leaks were no longer something to worry about.
And because components were not tightly bound to the DOM, the developers could spend more time adding
features and functionality rather than managing HTML and JavaScript spaghetti code.

2007 2009 2011 2014

Ext JS 1.0
Ext JS 2.0

Ext JS 3.0 Ext JS 4.0 Ext JS 5.0

Ext JS 3.0 was released in 2009, and it featured full support for REST communication, a charting package,
and even more widgets.

In 2011, Sencha released Ext JS 4, and it added support for MVC architecture, a revised data package and an
overhauled charting library. This was a revolutionary release, not just for our framework but also in comparison
to other frameworks at that time, because Ext JS was the first to address the problems faced by enterprise
web applications.

8 1700 Seaport Blvd. Suite 120, Redwood City, CA 94063 1 (800) 212–2802 www.sencha.com @sencha

2014: Ext JS 5
Sencha approached the Ext JS 5 release a bit differently. We wanted to carefully engineer a product that solved
the needs of an enterprise application, without breaking any of the hard work our customers had put into their
existing apps.

On the one hand, we wanted Ext JS 5 to maintain full backwards compatibility with applications built with an
MVC architecture in Ext JS 4. On the other hand, we wanted to help developers increase their productivity and
decrease code complexity. We believe that adding support for MVVM architecture did just that.

In a nutshell, Ext JS has evolved over the years to help address the architectural issues faced by enterprise web
applications. Now, let’s take a deeper look at the MVC and MVVM patterns and see what specific problems
they solve.

Making Sense of MVC and MVVM
Application architecture is as much about providing structure and consistency as it is about actual classes and
framework code. Building a good architecture unlocks a number of important benefits:

• Every application works the same way, so you only have to learn it once.
• It’s easy to share code between apps, because they all work the same way.
• It’s harder for developers to create overlapping and conflicting functionality.

These points are particularly important in the enterprise where development teams are both large and diverse –
potentially consisting of hundreds of developers spread across the world. These “teams” can change frequently,
and their projects can vary in duration from weeks to years. With so much time and money invested in the
software development cycle, there is little doubt why enterprises want to create a standard way of building
applications.

While many application architectural patterns exist, the two most popular in web development over the past
several years have been MVC and MVVM. Although similar, the two have subtle differences, which can have
significant architectural consequences if they’re not clearly understood.

Let’s first explore what the MVC and MVVM patterns are, and then examine how using Ext JS 5 helps the
enterprise solve specific architectural problems.

What is MVC?

Model–View–Controller (MVC) is an architectural pattern for writing software. It divides the user interface of an
application into three distinct parts, helping to organize the codebase into logical representations of information
depending upon their function.

MVC was originally conceived in the 1970s and was one of the first approaches to describing software in
terms of the conceptual “responsibilities” for individual pieces of a program. MVC has evolved since its initial
introduction, and many variations (such as MVP, MVVM and others) have appeared.

http://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller

9 1700 Seaport Blvd. Suite 120, Redwood City, CA 94063 1 (800) 212–2802 www.sencha.com @sencha

As a result of these variations, there is often confusion surrounding exactly what MVC constitutes, but in essence:
The Model describes a common format for the data being used in the application. It may also contain business
rules, validation logic and various other functions.

• The View represents the data to the user. Multiple views may display the same model data in different
ways (e.g. charts versus grids).

• The Controller is the central piece of an MVC application. It listens for events in the application and
delegates commands between the Model and the View. It may also contain business rules.

Controller

View Model

Event Fire

UpdateEvent Fire

Update

User Interaction

In MVC architecture, every object in the program is either a Model, a View or a Controller. The user interacts
with Views, which display data held in a Model; those interactions are monitored by a Controller, which then
responds to the interactions by updating the View and Model, as necessary.

The View and the Model are mostly unaware of each other because the Controller has the sole responsibility
of directing updates. Views typically have little (if any) business logic, and Models are simple interfaces to data
– meaning that Controllers hold most of the application logic within an MVC application.

Perhaps the best part about using MVC architecture in web applications is that it helps to avoid enormous files
full of spaghetti code. The goal of MVC is to clearly define the responsibilities of each piece of the application.
Because every class (i.e. every file) has clearly defined responsibilities, they implicitly become ignorant of the
larger environment – making the app easier to test, easier to maintain, and allowing code to be reused.

What is MVVM?

Model-View-ViewModel (MVVM) is another architectural pattern for writing software that is largely based on
the MVC pattern. It was conceived as a specialization of Martin Fowler’s Presentation Model design pattern,
in which the GUI configuration is clearly separated from any business logic.

The key difference between MVC and MVVM is that MVVM features an abstraction of a View (the ViewModel),
which manages the changes between a Model’s data and the View’s representation of that data (i.e. data
bindings) – something that typically is cumbersome to manage in traditional MVC applications.

http://en.wikipedia.org/wiki/Model_View_ViewModel

10 1700 Seaport Blvd. Suite 120, Redwood City, CA 94063 1 (800) 212–2802 www.sencha.com @sencha

ViewModel

View

Model

Methods

EventsData Binding

The result is that the Model and framework perform as much work as possible, minimizing or eliminating
application logic that directly manipulates the View.

The MVVM pattern includes the following elements:

• The Model describes a common format for the data being used in the application, just as in the classic
MVC pattern.

• The View represents the data to the user, just as in the classic MVC pattern.
• The ViewModel is an abstraction of the View that mediates changes between the View and an

associated Model. In the MVC pattern, this would have been the responsibility of a specialized
Controller, but in MVVM, the ViewModel directly manages the data bindings and formulas used by the
View in question.

MVC and MVVM in Ext JS 5
Now that we have a basic understanding of both MVC and MVVM from a theoretical standpoint, let’s examine
how Sencha applications implement MVC and MVVM. We will also investigate some shortcomings of MVC and
discuss how MVVM attempts to solve these issues.

MVC in Ext JS

Client-Side vs. Server-Side

Because of the success we saw in the enterprise with server-side frameworks like Apache Struts and ASP.
NET MVC, we modeled our approach to MVC on these paradigms. But when you read enough descriptions
of MVC, MVP and the related architectural patterns, it becomes clear that there is no single definition of MVC,
and certainly not everyone agrees.

When we first introduced MVC support for Ext JS 4 in 2011, It wasn’t a surprise that there was some initial
confusion surrounding our approach. Ext JS is a client-side application framework, and therefore a Sencha
“application” runs inside what might be considered a “View” in terms of the traditional server-side architecture.

Because Sencha frameworks are server-side agnostic, we try to separate the idea of “architecture on the
client” from “architecture on the server” because ultimately Sencha applications don’t care about the lower
tiers of the underlying project.

11 1700 Seaport Blvd. Suite 120, Redwood City, CA 94063 1 (800) 212–2802 www.sencha.com @sencha

Ext JS Application Architecture

Ext JS is a true “framework” in that it acts as a universal software platform for developing web applications.
Beyond the architectural paradigm for structuring application code, Ext JS features many extensible widgets
and utilities for manipulating data. As such, the framework controls the application lifecycle, allowing the
developer to focus on the functionality of the program.

In an MVC application, Ext JS has specific classes to manage Controllers (Ext.app.Controller) and Models
(Ext.data.Model), but Views are defined by extending any of the framework’s widgets (which all inherit from
Ext.Component).

Models, Views and Controllers in an MVC application will follow a clearly defined naming convention (e.g.
MyApp.model.User), which correlates to their location in the filesystem (e.g. ~/app/model/User.js).

The Ext JS framework then dynamically loads all application dependencies at runtime (and can optionally
compile them for deployment).

Controllers: Pros and Cons

While MVC, in general, did help enterprises build applications with well-organized code, we also found that
MVC had a few shortcomings.

Over time, our Professional Services and Support teams reported that many customer applications contained
a very small number of Controllers that each spanned thousands of lines of code – a problem leading to poor
performance and long-term maintenance problems.

In the Ext JS approach to MVC, Controllers are also globally scoped (to the application). This results in
additional business logic to grab references to Views, Models and other objects. Controllers could be written
to watch any object at any time, so any given Controller might have logic for both View A and View B, leading
to additional confusion in large applications.

12 1700 Seaport Blvd. Suite 120, Redwood City, CA 94063 1 (800) 212–2802 www.sencha.com @sencha

Model Model

Controller

View View View

Finally, we found that writing unit tests against MVC applications was difficult. Models, Views and Controllers
are supposed to be loosely coupled, but in reality, testing a Controller requires knowledge of both the relevant
Models and Views. Because Controllers often listened for events across multiple Views, customers found it
hard to test individual “units” without launching the entire application to satisfy these dependencies.

Pros Cons

Organized Code
Separation of Concerns

Extra Business Logic
Global Controllers

Refs
Testing Challenges

In summary, MVC architecture has some very good benefits for web applications and Ext JS 5 will continue
to support this pattern into the future. But MVC does have a few shortcomings which Ext JS 5 addresses by
adding support for MVVM.

MVVM in Ext JS

As noted in the previous section, the biggest complaint about MVC was that global (decoupled) Controllers
seem great in theory, but they can be difficult to manage in practice. MVVM can mitigate this problem by
coupling Views to a specific ViewModel (and/or ViewController) instance, resulting in superior organization,
maintainability and testability.

Ext JS Application Architecture

In Ext JS 5 with MVVM, not much has actually changed in terms of the overall architecture. Models still extend
Ext.data.Model, and Views still extend any of the framework’s widgets. The ViewModel works essentially the
same way, using the new Ext.app.ViewModel class.

Models, Views and ViewModels in an MVVM application continue to follow the clearly defined naming
convention used previously, where MyApp.model.User would correlate to ~/app/model/User.js.

13 1700 Seaport Blvd. Suite 120, Redwood City, CA 94063 1 (800) 212–2802 www.sencha.com @sencha

As such, any application written in Ext JS 4.x should upgrade to Ext JS 5.x without any problems from an
architectural standpoint.

ViewModels

The major difference between MVC and MVVM comes down to the ViewModel. At a high level, MVC Controllers
and MVVM ViewModels are very similar; however, the ViewModel facilitates updates in the Model and the View
through data binding rather than through events.

The ViewModel also participates in the component lifecycle. For every instance of a View, unique instances
of the configured ViewModel are also created. The ViewModel is then subsequently destroyed when the
associated View is destroyed.

Model

View View

ViewModel ViewModel

ViewControllers

Despite the name Model-View-ViewModel, the MVVM pattern in Ext JS may still use Controllers – although one
might choose to then call it a hybrid MVC+VM architecture. Confusing acronyms aside, the point is that each
of these approaches has merit, and Ext JS 5 is flexible enough to support both.

Ext JS 4 introduced MVC Controllers as application-wide event listeners (e.g. a publish/subscribe model or
event bus), and Ext JS 5 still supports that concept. However, Ext JS 5 also supports a new variation termed
ViewController.

A ViewController in Ext JS is similar in nature to a ViewModel. Both constructs are scoped directly to the
related View, eliminating much of the overhead required in traditional MVC to manage object references and
restore application state.

ViewControllers are also similar to traditional (i.e. application-wide) MVC Controllers from Ext JS 4 in that
they listen for events and execute logic in response to those events. However, a major difference between
ViewControllers and “traditional” Controllers is that individual ViewControllers are created for each related
View, whereas Controllers are singular constructs listening globally across multiple Views.

ViewControllers also allow us to write declarative listeners, which reduces the complexity of our application
code and helps keep the View free from business logic.

14 1700 Seaport Blvd. Suite 120, Redwood City, CA 94063 1 (800) 212–2802 www.sencha.com @sencha

Lastly, ViewControllers and ViewModels participate in the Component lifecycle – meaning that for every instance
of a View, unique instances of the configured ViewModel and ViewController are also created. The ViewModel
and ViewController are subsequently destroyed when their associated View is destroyed.

ViewController

ViewModel Model

View

Methods

Events

Events Commands
(Methods)

Data Binding

The result of tightly coupled Views and ViewControllers (and/or ViewModels) is that Ext JS applications now
become far easier to unit test. In MVVM, we can easily avoid writing bloated global Controllers, leading to
components that can be completely isolated for testing.

It is important to keep in mind that not all Views in the Ext JS approach to MVVM require a ViewController or
ViewModel – they are completely optional parts of the architecture.

Conclusion
Ext JS 4 paved the way for enterprise web applications to begin using MVC – defining a consistent architecture
for organized code. Ext JS 5 builds upon the success of MVC by adding support for MVVM while also
maintaining backwards compatibility. Developers should have no problems upgrading all apps built using Ext
JS 4 and MVC to the latest version, and will not have to re-architect their applications.

MVC MVVM

Orgnaized Code
Separation of Concerns

Data Binding
Less Code

Easier to Test

Client-side MVC was a huge step forward for enterprise web applications. It offered a solution to unorganized
spaghetti code and helped applications scale easily. MVVM builds upon the foundations of MVC by incorporating
data binding and declarative listeners, eliminating lots of code and making applications easier to unit test!

15 1700 Seaport Blvd. Suite 120, Redwood City, CA 94063 1 (800) 212–2802 www.sencha.com @sencha

Resources:
● Ext JS 5: MVC, MVVM and more!

● Ext JS 5: View Models and Data Binding

● Understanding Sencha Cmd Packages

● Model-View-ViewModel for iOS

● MVC or MVP Pattern - What’s the Difference?

● StackOverflow: What are MVP and MVC and what is the difference?

● GUI Architectures

https://www.sencha.com/blog/ext-js-5-mvc-mvvm-and-more
http://docs.sencha.com/extjs/5.0.0/application_architecture/view_models_data_binding.html
http://www.sencha.com/blog/understanding-sencha-cmd-packages
http://www.teehanlax.com/blog/model-view-viewmodel-for-ios/
http://www.infragistics.com/community/blogs/todd_snyder/archive/2007/10/17/mvc-or-mvp-pattern-whats-the-difference.aspx
http://stackoverflow.com/questions/2056/what-are-mvp-and-mvc-and-what-is-the-difference
http://martinfowler.com/eaaDev/uiArchs.html

	h.7q9z6dx2xik0
	h.3swpxujel50q
	h.l9t5xvrgfyek
	h.gggew2b185i7
	h.nbt95ugqiggc
	h.kh1miimpppeh
	h.3qrzlwfu45p0
	h.uu9wfv1cg8zs
	h.l9xq5bqj8rml
	h.hni6ogkgrq0c
	h.mv1jtjqzqvom
	h.pegefk2oqkg6
	h.ide7gwutidzf
	h.ggdah2f7upx1
	h.jucrk3ifoxt9
	h.z0mtiltpghah

